Abstract:Cross drainage hydraulic structures (i.e., culverts, bridges) in urban landscapes are prone to getting blocked by transported debris which often results in causing the flash floods. In context of Australia, Wollongong City Council (WCC) blockage conduit policy is the only formal guideline to consider blockage in design process. However, many argue that this policy is based on the post floods visual inspections and hence can not be considered accurate representation of hydraulic blockage. As a result of this on-going debate, visual blockage and hydraulic blockage are considered two distinct terms with no established quantifiable relation among both. This paper attempts to relate both terms by proposing the use of deep visual features for prediction of hydraulic blockage at a given culvert. An end-to-end machine learning pipeline is propounded which takes an image of culvert as input, extract visual features using deep learning models, pre-process the visual features and feed into regression model to predict the corresponding hydraulic blockage. Dataset (i.e., Hydrology-Lab Dataset (HD), Visual Hydrology-Lab Dataset (VHD)) used in this research was collected from in-lab experiments carried out using scaled physical models of culverts where multiple blockage scenarios were replicated at scale. Performance of regression models was assessed using standard evaluation metrics. Furthermore, performance of overall machine learning pipeline was assessed in terms of processing times for relative comparison of models and hardware requirement analysis. From the results ANN used with MobileNet extracted visual features achieved the best regression performance with $R^{2}$ score of 0.7855. Positive value of $R^{2}$ score indicated the presence of correlation between visual features and hydraulic blockage and suggested that both can be interrelated with each other.
Abstract:Blockage of culverts by transported debris materials is reported as main contributor in originating urban flash floods. Conventional modelling approaches had no success in addressing the problem largely because of unavailability of peak floods hydraulic data and highly non-linear behaviour of debris at culvert. This article explores a new dimension to investigate the issue by proposing the use of Intelligent Video Analytic (IVA) algorithms for extracting blockage related information. Potential of using existing Convolutional Neural Network (CNN) algorithms (i.e., DarkNet53, DenseNet121, InceptionResNetV2, InceptionV3, MobileNet, ResNet50, VGG16, EfficientNetB3, NASNet) is investigated over a custom collected blockage dataset (i.e., Images of Culvert Openings and Blockage (ICOB)) to predict the blockage in a given image. Models were evaluated based on their performance on test dataset (i.e., accuracy, loss, precision, recall, F1-score, Jaccard-Index), Floating Point Operations Per Second (FLOPs) and response times to process a single test instance. From the results, NASNet was reported most efficient in classifying the blockage with the accuracy of 85\%; however, EfficientNetB3 was recommended for the hardware implementation because of its improved response time with accuracy comparable to NASNet (i.e., 83\%). False Negative (FN) instances, False Positive (FP) instances and CNN layers activation suggested that background noise and oversimplified labelling criteria were two contributing factors in degraded performance of existing CNN algorithms.
Abstract:Hydraulic blockage of cross-drainage structures such as culverts is considered one of main contributor in triggering urban flash floods. However, due to lack of during floods data and highly non-linear nature of debris interaction, conventional modelling for hydraulic blockage is not possible. This paper proposes to use machine learning regression analysis for the prediction of hydraulic blockage. Relevant data has been collected by performing a scaled in-lab study and replicating different blockage scenarios. From the regression analysis, Artificial Neural Network (ANN) was reported best in hydraulic blockage prediction with $R^2$ of 0.89. With deployment of hydraulic sensors in smart cities, and availability of Big Data, regression analysis may prove helpful in addressing the blockage detection problem which is difficult to counter using conventional experimental and hydrological approaches.