Independent Researcher, Northampton, UK
Abstract:Denial-of-Service (DoS) attacks remain a critical threat to network security, disrupting services and causing significant economic losses. Traditional detection methods, including statistical and rule-based models, struggle to adapt to evolving attack patterns. To address this challenge, we propose a novel Temporal-Spatial Attention Network (TSAN) architecture for detecting Denial of Service (DoS) attacks in network traffic. By leveraging both temporal and spatial features of network traffic, our approach captures complex traffic patterns and anomalies that traditional methods might miss. The TSAN model incorporates transformer-based temporal encoding, convolutional spatial encoding, and a cross-attention mechanism to fuse these complementary feature spaces. Additionally, we employ multi-task learning with auxiliary tasks to enhance the model's robustness. Experimental results on the NSL-KDD dataset demonstrate that TSAN outperforms state-of-the-art models, achieving superior accuracy, precision, recall, and F1-score while maintaining computational efficiency for real-time deployment. The proposed architecture offers an optimal balance between detection accuracy and computational overhead, making it highly suitable for real-world network security applications.
Abstract:False arrhythmia alarms in intensive care units (ICUs) are a significant challenge, contributing to alarm fatigue and potentially compromising patient safety. Ventricular tachycardia (VT) alarms are particularly difficult to detect accurately due to their complex nature. This paper presents a machine learning approach to reduce false VT alarms using the VTaC dataset, a benchmark dataset of annotated VT alarms from ICU monitors. We extract time-domain and frequency-domain features from waveform data, preprocess the data, and train deep learning models to classify true and false VT alarms. Our results demonstrate high performance, with ROC-AUC scores exceeding 0.96 across various training configurations. This work highlights the potential of machine learning to improve the accuracy of VT alarm detection in clinical settings.