Abstract:We present here a new model and algorithm which performs an efficient Natural gradient descent for Multilayer Perceptrons. Natural gradient descent was originally proposed from a point of view of information geometry, and it performs the steepest descent updates on manifolds in a Riemannian space. In particular, we extend an approach taken by the "Whitened neural networks" model. We make the whitening process not only in feed-forward direction as in the original model, but also in the back-propagation phase. Its efficacy is shown by an application of this "Bidirectional whitened neural networks" model to a handwritten character recognition data (MNIST data).
Abstract:We propose a new approach for solving combinatorial optimization problem by utilizing the mechanism of chases and escapes, which has a long history in mathematics. In addition to the well-used steepest descent and neighboring search, we perform a chase and escape game on the "landscape" of the cost function. We have created a concrete algorithm for the Traveling Salesman Problem. Our preliminary test indicates a possibility that this new fusion of chases and escapes problem into combinatorial optimization search is fruitful.