Abstract:Reduced shoulder mobility limits upper-limb function and the performance of activities of daily living across a wide range of conditions. Wearable exosuits have shown promise in assisting arm elevation, reducing muscle effort, and supporting functional movements; however, comfort is rarely prioritized as an explicit design objective, despite it strongly affects real-life, long-term usage. This study presents a redesigned soft shoulder exosuit (Soft Shoulder v2) developed to address comfort-related limitations identified in our previous version, while preserving assistive performance. In parallel, assistance was also improved, shifting from the coronal plane to the sagittal plane to better support functionally relevant hand positioning. A controlled comparison between the previous (v1) and redesigned (v2) modules was conducted in eight healthy participants, who performed static holding, dynamic lifting, and a functional pick and place task. Muscle activity, kinematics, and user-reported outcomes were assessed. Both versions increased endurance time, reduced deltoid activation, and preserved transparency during unpowered shoulder elevation. However, the difference between them emerged most clearly during functional tasks and comfort evaluation. The redesigned module facilitated forward arm positioning and increased transverse plane mobility by up to 30 deg, without increasing muscular demand. User-reported outcomes further indicated a substantial improvement in wearability, with markedly lower perceived pressure and higher ratings in effectiveness, ease of use, and comfort compared to the previous design. Taken together, these findings show that targeted, user-centered design refinements can improve comfort and functional interaction without compromising assistive performance, advancing the development of soft exosuits suitable for prolonged and daily use.




Abstract:Detecting point anomalies in bank account balances is essential for financial institutions, as it enables the identification of potential fraud, operational issues, or other irregularities. Robust statistics is useful for flagging outliers and for providing estimates of the data distribution parameters that are not affected by contaminated observations. However, such a strategy is often less efficient and computationally expensive under high dimensional setting. In this paper, we propose and evaluate empirically several robust approaches that may be computationally efficient in medium and high dimensional datasets, with high breakdown points and low computational time. Our application deals with around 2.6 million daily records of anonymous users' bank account balances.
Abstract:Neurological disorders, including stroke, spinal cord injuries, multiple sclerosis, and Parkinson's disease, generally lead to diminished upper extremity (UE) function, impacting individuals' independence and quality of life. Traditional assessments predominantly focus on standardized clinical tasks, offering limited insights into real-life UE performance. In this context, this review focuses on wearable technologies as a promising solution to monitor UE function in neurologically impaired individuals during daily life activities. Our primary objective is to categorize the different sensors, data collection and data processing approaches employed. What comes to light is that the majority of studies involved stroke survivors, and predominantly employed inertial measurement units and accelerometers to collect kinematics. Most analyses in these studies were performed offline, focusing on activity duration and frequency as key metrics. Although wearable technology shows potential in monitoring UE function in real-life scenarios, an ideal solution that combines non-intrusiveness, lightweight design, detailed hand and finger movement capture, contextual information, extended recording duration, ease of use, and privacy protection remains an elusive goal. Furthermore, it stands out a growing necessity for a multimodal approach in capturing comprehensive data on UE function during real-life activities to enhance the personalization of rehabilitation strategies and ultimately improve outcomes for these individuals.