Abstract:This paper introduces a study on tweet sentiment classification. Our task is to classify a tweet as either positive or negative. We approach the problem in two steps, namely embedding and classifying. Our baseline methods include several combinations of traditional embedding methods and classification algorithms. Furthermore, we explore the current state-of-the-art tweet analysis model, BERTweet, and propose a novel approach in which features are engineered from the hidden states and attention matrices of the model, inspired by empirical study of the tweets. Using a multi-layer perceptron trained with a high dropout rate for classification, our proposed approach achieves a validation accuracy of 0.9111.
Abstract:The image classification problem has been deeply investigated by the research community, with computer vision algorithms and with the help of Neural Networks. The aim of this paper is to build an image classifier for satellite images of urban scenes that identifies the portions of the images in which a road is located, separating these portions from the rest. Unlike conventional computer vision algorithms, convolutional neural networks (CNNs) provide accurate and reliable results on this task. Our novel approach uses a sliding window to extract patches out of the whole image, data augmentation for generating more training/testing data and lastly a series of specially modified U-Net CNNs. This proposed technique outperforms all other baselines tested in terms of mean F-score metric.