Abstract:Semiconductor devices, especially MOSFETs (Metal-oxide-semiconductor field-effect transistor), are crucial in power electronics, but their reliability is affected by aging processes influenced by cycling and temperature. The primary aging mechanism in discrete semiconductors and power modules is the bond wire lift-off, caused by crack growth due to thermal fatigue. The process is empirically characterized by exponential growth and an abrupt end of life, making long-term aging forecasts challenging. This research presents a comprehensive comparative assessment of different forecasting methods for MOSFET failure forecasting applications. Classical tracking, statistical forecasting and Neural Network (NN) based forecasting models are implemented along with novel Temporal Fusion Transformers (TFTs). A comprehensive comparison is performed assessing their MOSFET ageing forecasting ability for different forecasting horizons. For short-term predictions, all algorithms result in acceptable results, with the best results produced by classical NN forecasting models at the expense of higher computations. For long-term forecasting, only the TFT is able to produce valid outcomes owing to the ability to integrate covariates from the expected future conditions. Additionally, TFT attention points identify key ageing turning points, which indicate new failure modes or accelerated ageing phases.
Abstract:Ensuring the reliability of power electronic converters is a matter of great importance, and data-driven condition monitoring techniques are cementing themselves as an important tool for this purpose. However, translating methods that work well in controlled lab environments to field applications presents significant challenges, notably because of the limited diversity and accuracy of the lab training data. By enabling the use of field data, online machine learning can be a powerful tool to overcome this problem, but it introduces additional challenges in ensuring the stability and predictability of the training processes. This work presents an edge computing method that mitigates these shortcomings with minimal additional memory usage, by employing an autonomous algorithm that prioritizes the storage of training samples with larger prediction errors. The method is demonstrated on the use case of a self-commissioning condition monitoring system, in the form of a thermal anomaly detection scheme for a variable frequency motor drive, where the algorithm self-learned to distinguish normal and anomalous operation with minimal prior knowledge. The obtained results, based on experimental data, show a significant improvement in prediction accuracy and training speed, when compared to equivalent models trained online without the proposed data selection process.