IRMA
Abstract:We present an algorithm that fully reverses the shoebox image source method (ISM), a popular and widely used room impulse response (RIR) simulator for cuboid rooms introduced by Allen and Berkley in 1979. More precisely, given a discrete multichannel RIR generated by the shoebox ISM for a microphone array of known geometry, the algorithm reliably recovers the 18 input parameters. These are the 3D source position, the 3 dimensions of the room, the 6-degrees-of-freedom room translation and orientation, and an absorption coefficient for each of the 6 room boundaries. The approach builds on a recently proposed gridless image source localization technique combined with new procedures for room axes recovery and first-order-reflection identification. Extensive simulated experiments reveal that near-exact recovery of all parameters is achieved for a 32-element, 8.4-cm-wide spherical microphone array and a sampling rate of 16~kHz using fully randomized input parameters within rooms of size 2X2X2 to 10X10X5 meters. Estimation errors decay towards zero when increasing the array size and sampling rate. The method is also shown to strongly outperform a known baseline, and its ability to extrapolate RIRs at new positions is demonstrated. Crucially, the approach is strictly limited to low-passed discrete RIRs simulated using the vanilla shoebox ISM. Nonetheless, it represents to our knowledge the first algorithmic demonstration that this difficult inverse problem is in-principle fully solvable over a wide range of configurations.
Abstract:Given a sound field generated by a sparse distribution of impulse image sources, can the continuous 3D positions and amplitudes of these sources be recovered from discrete, bandlimited measurements of the field at a finite set of locations, e.g., a multichannel room impulse response? Borrowing from recent advances in super-resolution imaging, it is shown that this nonlinear, non-convex inverse problem can be efficiently relaxed into a convex linear inverse problem over the space of Radon measures in R3. The linear operator introduced here stems from the fundamental solution of the free-field inhomogenous wave equation combined with the receivers' responses. An adaptation of the Sliding Frank-Wolfe algorithm is proposed to numerically solve the problem off-the-grid, i.e., in continuous 3D space. Simulated experiments show that the approach achieves near-exact recovery of hundreds of image sources using an arbitrarily placed compact 32-channel spherical microphone array in random rectangular rooms. The impact of noise, sampling rate and array diameter on these results is also examined.