Abstract:We present TIDES, a text informed design approach for generating physically sound designs based on a textual description and a set of physical constraints. TIDES jointly optimizes structural (topology) and visual properties. A pre-trained text-image model is used to measure the design's visual alignment with a text prompt and a differentiable physics simulator is used to measure its physical performance. We evaluate TIDES on a series of structural optimization problems operating under different load and support conditions, at different resolutions, and experimentally in the lab by performing the 3-point bending test on 2D beam designs that are extruded and 3D printed. We find that it can jointly optimize the two objectives and return designs that satisfy engineering design requirements (compliance and density) while utilizing features specified by text.
Abstract:Recently, there has been an interest in the incorporation of buckypaper (BP), or carbon nanotube (CNT) membranes, in composite laminates. Research has shown that using BP in contrast to nanotube doped resin enables the introduction of a higher CNT weight fraction which offers multiple benefits including higher piezo resistivity for health monitoring applications and enhanced mechanical response for structural applications. However, their impact on the deformation and failure mechanisms of composite laminates has not been investigated thoroughly. Understanding these issues experimentally would require a carefully executed test plan involving a multitude of design parameters such as BP geometry and placement, material anisotropy and variability, and laminate stacking sequence. This paper presents a deep learning (DL)-based surrogate model for studying the mechanical response of hybrid carbon fiber reinforced polymer (CFRP) composite laminates with BP interleaves under various mechanical loads. The surrogate model utilizes a long short-term memory architecture implemented within a DL framework and predicts the laminate global response for a given configuration, geometry, and loading condition. The DL framework training and cross-validation are performed via data acquisition from a series of three-point bend tests conducted through finite element analysis (FEA) and in-house experiments, respectively. The model predictions show good agreement with FEA simulations and experimental results, where CFRP with two BP interleaves showed enhanced flexural strength and modulus over pristine samples. This enhancement can be attributed to the excellent crack retardation capabilities of CNTs, particularly in the interlaminar region.