Abstract:Developing the logic necessary to solve mathematical problems or write mathematical proofs is one of the more difficult objectives for large language models (LLMS). Currently, the most popular methods in literature consists of fine-tuning the model on written mathematical content such as academic publications and textbooks, so that the model can learn to emulate the style of mathematical writing. In this project, we explore the effectiveness of using retrieval augmented generation (RAG) to address gaps in the mathematical reasoning of LLMs. We develop LemmaHead, a RAG knowledge base that supplements queries to the model with relevant mathematical context, with particular focus on context from published textbooks. To measure our model's performance in mathematical reasoning, our testing paradigm focuses on the task of automated theorem proving via generating proofs to a given mathematical claim in the Lean formal language.
Abstract:We establish estimations for the parameters of the output distribution for the softmax activation function using the probit function. As an application, we develop a new efficient Bayesian learning algorithm for fully connected neural networks, where training and predictions are performed within the Bayesian inference framework in closed-form. This approach allows sequential learning and requires no computationally expensive gradient calculation and Monte Carlo sampling. Our work generalizes the Bayesian algorithm for a single perceptron for binary classification in \cite{H} to multi-layer perceptrons for multi-class classification.