Abstract:In the realm of automated driving simulation and sensor modeling, the need for highly accurate sensor models is paramount for ensuring the reliability and safety of advanced driving assistance systems (ADAS). Hence, numerous works focus on the development of high-fidelity models of ADAS sensors, such as camera, Radar as well as modern LiDAR systems to simulate the sensor behavior in different driving scenarios, even under varying environmental conditions, considering for example adverse weather effects. However, aging effects of sensors, leading to suboptimal system performance, are mostly overlooked by current simulation techniques. This paper introduces a cutting-edge Hardware-in-the-Loop (HiL) test bench designed for the automated, accelerated aging and characterization of Automotive LiDAR sensors. The primary objective of this research is to address the aging effects of LiDAR sensors over the product life cycle, specifically focusing on aspects such as laser beam profile deterioration, output power reduction and intrinsic parameter drift, which are mostly neglected in current sensor models. By that, this proceeding research is intended to path the way, not only towards identifying and modeling respective degradation effects, but also to suggest quantitative model validation metrics.