Le2i
Abstract:From a telecommunication standpoint, the surge in users and services challenges next-generation networks with escalating traffic demands and limited resources. Accurate traffic prediction can offer network operators valuable insights into network conditions and suggest optimal allocation policies. Recently, spatio-temporal forecasting, employing Graph Neural Networks (GNNs), has emerged as a promising method for cellular traffic prediction. However, existing studies, inspired by road traffic forecasting formulations, overlook the dynamic deployment and removal of base stations, requiring the GNN-based forecaster to handle an evolving graph. This work introduces a novel inductive learning scheme and a generalizable GNN-based forecasting model that can process diverse graphs of cellular traffic with one-time training. We also demonstrate that this model can be easily leveraged by transfer learning with minimal effort, making it applicable to different areas. Experimental results show up to 9.8% performance improvement compared to the state-of-the-art, especially in rare-data settings with training data reduced to below 20%.
Abstract:Graph data structures are widely used to store relational information between several entities. With data being generated worldwide on a large scale, we see a significant growth in the generation of knowledge graphs. Thing in the future is Orange's take on a knowledge graph in the domain of the Web Of Things (WoT), where the main objective of the platform is to provide a digital representation of the physical world and enable cross-domain applications to be built upon this massive and highly connected graph of things. In this context, as the knowledge graph grows in size, it is prone to have noisy and messy data. In this paper, we explore state-of-the-art knowledge graph embedding (KGE) methods to learn numerical representations of the graph entities and, subsequently, explore downstream tasks like link prediction, node classification, and triple classification. We also investigate Graph neural networks (GNN) alongside KGEs and compare their performance on the same downstream tasks. Our evaluation highlights the encouraging performance of both KGE and GNN-based methods on node classification, and the superiority of GNN approaches in the link prediction task. Overall, we show that state-of-the-art approaches are relevant in a WoT context, and this preliminary work provides insights to implement and evaluate them in this context.
Abstract:Analyzing Big Data can help corporations to im-prove their efficiency. In this work we present a new vision to derive Value from Big Data using a Semantic Hierarchical Multi-label Classification called Semantic HMC based in a non-supervised Ontology learning process. We also proposea Semantic HMC process, using scalable Machine-Learning techniques and Rule-based reasoning.