Abstract:For any family of measurable sets in a probability space, we show that either (i) the family has infinite Vapnik-Chervonenkis (VC) dimension or (ii) for every epsilon > 0 there is a finite partition pi such the pi-boundary of each set has measure at most epsilon. Immediate corollaries include the fact that a family with finite VC dimension has finite bracketing numbers, and satisfies uniform laws of large numbers for every ergodic process. From these corollaries, we derive analogous results for VC major and VC graph families of functions.
Abstract:We show that the sets in a family with finite VC dimension can be uniformly approximated within a given error by a finite partition. Immediate corollaries include the fact that VC classes have finite bracketing numbers, satisfy uniform laws of averages under strong dependence, and exhibit uniform mixing. Our results are based on recent work concerning uniform laws of averages for VC classes under ergodic sampling.
Abstract:Let F be a family of Borel measurable functions on a complete separable metric space. The gap (or fat-shattering) dimension of F is a combinatorial quantity that measures the extent to which functions f in F can separate finite sets of points at a predefined resolution gamma > 0. We establish a connection between the gap dimension of F and the uniform convergence of its sample averages under ergodic sampling. In particular, we show that if the gap dimension of F at resolution gamma > 0 is finite, then for every ergodic process the sample averages of functions in F are eventually within 10 gamma of their limiting expectations uniformly over the class F. If the gap dimension of F is finite for every resolution gamma > 0 then the sample averages of functions in F converge uniformly to their limiting expectations. We assume only that F is uniformly bounded and countable (or countably approximable). No smoothness conditions are placed on F, and no assumptions beyond ergodicity are placed on the sampling processes. Our results extend existing work for i.i.d. processes.