Abstract:In this paper, we present a novel approach for contour detection with Convolutional Neural Networks. A multi-scale CNN learning framework is designed to automatically learn the most relevant features for contour patch detection. Our method uses patch-level measurements to create contour maps with overlapping patches. We show the proposed CNN is able to to detect large-scale contours in an image efficienly. We further propose a guided filtering method to refine the contour maps produced from large-scale contours. Experimental results on the major contour benchmark databases demonstrate the effectiveness of the proposed technique. We show our method can achieve good detection of both fine-scale and large-scale contours.
Abstract:Local structures of shadow boundaries as well as complex interactions of image regions remain largely unexploited by previous shadow detection approaches. In this paper, we present a novel learning-based framework for shadow region recovery from a single image. We exploit the local structures of shadow edges by using a structured CNN learning framework. We show that using the structured label information in the classification can improve the local consistency of the results and avoid spurious labelling. We further propose and formulate a shadow/bright measure to model the complex interactions among image regions. The shadow and bright measures of each patch are computed from the shadow edges detected in the image. Using the global interaction constraints on patches, we formulate a least-square optimization problem for shadow recovery that can be solved efficiently. Our shadow recovery method achieves state-of-the-art results on the major shadow benchmark databases collected under various conditions.