Abstract:Evolutional deep neural networks (EDNN) solve partial differential equations (PDEs) by marching the network representation of the solution fields, using the governing equations. Use of a single network to solve coupled PDEs on large domains requires a large number of network parameters and incurs a significant computational cost. We introduce coupled EDNN (C-EDNN) to solve systems of PDEs by using independent networks for each state variable, which are only coupled through the governing equations. We also introduce distributed EDNN (D-EDNN) by spatially partitioning the global domain into several elements and assigning individual EDNNs to each element to solve the local evolution of the PDE. The networks then exchange the solution and fluxes at their interfaces, similar to flux-reconstruction methods, and ensure that the PDE dynamics are accurately preserved between neighboring elements. Together C-EDNN and D-EDNN form the general class of Multi-EDNN methods. We demonstrate these methods with aid of canonical problems including linear advection, the heat equation, and the compressible Navier-Stokes equations in Couette and Taylor-Green flows.
Abstract:The notion of an Evolutional Deep Neural Network (EDNN) is introduced for the solution of partial differential equations (PDE). The parameters of the network are trained to represent the initial state of the system only, and are subsequently updated dynamically, without any further training, to provide an accurate prediction of the evolution of the PDE system. In this framework, the network parameters are treated as functions with respect to the appropriate coordinate and are numerically updated using the governing equations. By marching the neural network weights in the parameter space, EDNN can predict state-space trajectories that are indefinitely long, which is difficult for other neural network approaches. Boundary conditions of the PDEs are treated as hard constraints, are embedded into the neural network, and are therefore exactly satisfied throughout the entire solution trajectory. Several applications including the heat equation, the advection equation, the Burgers equation, the Kuramoto Sivashinsky equation and the Navier-Stokes equations are solved to demonstrate the versatility and accuracy of EDNN. The application of EDNN to the incompressible Navier-Stokes equation embeds the divergence-free constraint into the network design so that the projection of the momentum equation to solenoidal space is implicitly achieved. The numerical results verify the accuracy of EDNN solutions relative to analytical and benchmark numerical solutions, both for the transient dynamics and statistics of the system.