Abstract:Folklore, a solid branch of folk literature, is the hallmark of any nation or any society. Such as oral tradition; as proverbs or jokes, it also includes material culture as well as traditional folk beliefs, and various customs. Bengali folklore is as rich in-depth as it is amazing. Nevertheless, in the womb of time, it is determined to sustain its existence. Therefore, our aim in this study is to make our rich folklore more comprehensible to everyone in a more sophisticated computational way. Some studies concluded various aspects of the Bengali language with NLP. Our proposed model is to be specific for Bengali folklore. Technically, it will be the first step towards Bengali natural language processing for studying and analyzing the folklore of Bengal.
Abstract:Accurate building energy prediction is useful in various applications starting from building energy automation and management to optimal storage control. However, vulnerabilities should be considered when designing building energy prediction models, as intelligent attackers can deliberately influence the model performance using sophisticated attack models. These may consequently degrade the prediction accuracy, which may affect the efficiency and performance of the building energy management systems. In this paper, we investigate the impact of bi-level poisoning attacks on regression models of energy usage obtained from household appliances. Furthermore, an effective countermeasure against the poisoning attacks on the prediction model is proposed in this paper. Attacks and defenses are evaluated on a benchmark dataset. Experimental results show that an intelligent cyber-attacker can poison the prediction model to manipulate the decision. However, our proposed solution successfully ensures defense against such poisoning attacks effectively compared to other benchmark techniques.