Abstract:Deploying large scale language models on edge devices faces inherent challenges such as high computational demands, energy consumption, and potential data privacy risks. This paper introduces the Shakti Small Language Models (SLMs) Shakti-100M, Shakti-250M, and Shakti-500M which target these constraints headon. By combining efficient architectures, quantization techniques, and responsible AI principles, the Shakti series enables on-device intelligence for smartphones, smart appliances, IoT systems, and beyond. We provide comprehensive insights into their design philosophy, training pipelines, and benchmark performance on both general tasks (e.g., MMLU, Hellaswag) and specialized domains (healthcare, finance, and legal). Our findings illustrate that compact models, when carefully engineered and fine-tuned, can meet and often exceed expectations in real-world edge-AI scenarios.
Abstract:We introduce Shakti VLM, a family of vision-language models in the capacity of 1B and 4B parameters designed to address data efficiency challenges in multimodal learning. While recent VLMs achieve strong performance through extensive training data, Shakti models leverage architectural innovations to attain competitive results with fewer tokens. Key advancements include QK-Normalization for attention stability, hybrid normalization techniques, and enhanced positional encoding. A three-stage training strategy further optimizes learning efficiency. Evaluations show that Shakti-Shakti-VLM-1B and Shakti-VLM-4B excel in document understanding, Visual Reasoning, OCR extraction, and general multimodal reasoning. Our results highlight that high performance can be achieved through model design and training strategy rather than sheer data volume, making Shakti an efficient solution for enterprise-scale multimodal tasks.
Abstract:We propose Samba ASR,the first state of the art Automatic Speech Recognition(ASR)model leveraging the novel Mamba architecture as both encoder and decoder,built on the foundation of state space models(SSMs).Unlike transformerbased ASR models,which rely on self-attention mechanisms to capture dependencies,Samba ASR effectively models both local and global temporal dependencies using efficient statespace dynamics,achieving remarkable performance gains.By addressing the limitations of transformers,such as quadratic scaling with input length and difficulty in handling longrange dependencies,Samba ASR achieves superior accuracy and efficiency.Experimental results demonstrate that Samba ASR surpasses existing opensource transformerbased ASR models across various standard benchmarks,establishing it as the new state of theart in ASR.Extensive evaluations on the benchmark dataset show significant improvements in Word Error Rate(WER),with competitive performance even in lowresource scenarios.Furthermore,the inherent computational efficiency and parameter optimization of the Mamba architecture make Samba ASR a scalable and robust solution for diverse ASR tasks.Our contributions include the development of a new Samba ASR architecture for automatic speech recognition(ASR),demonstrating the superiority of structured statespace models(SSMs)over transformer based models for speech sequence processing.We provide a comprehensive evaluation on public benchmarks,showcasing stateoftheart(SOTA)performance,and present an indepth analysis of computational efficiency,robustness to noise,and sequence generalization.This work highlights the viability of Mamba SSMs as a transformerfree alternative for efficient and accurate ASR.By leveraging the advancements of statespace modeling,Samba ASR redefines ASR performance standards and sets a new benchmark for future research in this field.
Abstract:We introduce Shakti, a 2.5 billion parameter language model specifically optimized for resource-constrained environments such as edge devices, including smartphones, wearables, and IoT systems. Shakti combines high-performance NLP with optimized efficiency and precision, making it ideal for real-time AI applications where computational resources and memory are limited. With support for vernacular languages and domain-specific tasks, Shakti excels in industries such as healthcare, finance, and customer service. Benchmark evaluations demonstrate that Shakti performs competitively against larger models while maintaining low latency and on-device efficiency, positioning it as a leading solution for edge AI.