University of California, Berkeley
Abstract:The framework of Solomonoff prediction assigns prior probability to hypotheses inversely proportional to their Kolmogorov complexity. There are two well-known problems. First, the Solomonoff prior is relative to a choice of Universal Turing machine. Second, the Solomonoff prior is not computable. However, there are responses to both problems. Different Solomonoff priors converge with more and more data. Further, there are computable approximations to the Solomonoff prior. I argue that there is a tension between these two responses. This is because computable approximations to Solomonoff prediction do not always converge.
Abstract:We study group decision making with changing preferences as a Markov Decision Process. We are motivated by the increasing prevalence of automated decision-making systems when making choices for groups of people over time. Our main contribution is to show how classic representation theorems from social choice theory can be adapted to characterize optimal policies in this dynamic setting. We provide an axiomatic characterization of MDP reward functions that agree with the Utilitarianism social welfare functionals of social choice theory. We also provide discussion of cases when the implementation of social choice-theoretic axioms may fail to lead to long-run optimal outcomes.
Abstract:Ramsey (1926) sketches a proposal for measuring the subjective probabilities of an agent by their observable preferences, assuming that the agent is an expected utility maximizer. I show how to extend the spirit of Ramsey's method to a strictly wider class of agents: risk-weighted expected utility maximizers (Buchak 2013). In particular, I show how we can measure the risk attitudes of an agent by their observable preferences, assuming that the agent is a risk-weighted expected utility maximizer. Further, we can leverage this method to measure the subjective probabilities of a risk-weighted expected utility maximizer.