Abstract:This work introduces a novel bio-inspired reconfigurable stereo vision system for robotics, leveraging omnidirectional cameras and a novel algorithm to achieve flexible visual capabilities. Inspired by the adaptive vision of various species, our visual system addresses traditional stereo vision limitations, i.e., immutable camera alignment with narrow fields of view, by introducing a reconfigurable stereo vision system to robotics. Our key innovations include the reconfigurable stereo vision strategy that allows dynamic camera alignment, a robust depth measurement system utilizing a nonrectified geometrical method combined with a deep neural network for feature matching, and a geometrical compensation technique to enhance visual accuracy. Implemented on a metamorphic robot, this vision system demonstrates its great adaptability to various scenarios by switching its configurations of 316{\deg} monocular with 79{\deg} binocular field for fast target seeking and 242{\deg} monocular with 150{\deg} binocular field for detailed close inspection.