Abstract:In the era of modern technology, object detection using the Gray Level Co-occurrence Matrix (GLCM) extraction method plays a crucial role in object recognition processes. It finds applications in real-time scenarios such as security surveillance and autonomous vehicle navigation, among others. Computational efficiency becomes a critical factor in achieving real-time object detection. Hence, there is a need for a detection model with low complexity and satisfactory accuracy. This research aims to enhance computational efficiency by selecting appropriate features within the GLCM framework. Two classification models, namely K-Nearest Neighbours (K-NN) and Support Vector Machine (SVM), were employed, with the results indicating that K-Nearest Neighbours (K-NN) outperforms SVM in terms of computational complexity. Specifically, K-NN, when utilizing a combination of Correlation, Energy, and Homogeneity features, achieves a 100% accuracy rate with low complexity. Moreover, when using a combination of Energy and Homogeneity features, K-NN attains an almost perfect accuracy level of 99.9889%, while maintaining low complexity. On the other hand, despite SVM achieving 100% accuracy in certain feature combinations, its high or very high complexity can pose challenges, particularly in real-time applications. Therefore, based on the trade-off between accuracy and complexity, the K-NN model with a combination of Correlation, Energy, and Homogeneity features emerges as a more suitable choice for real-time applications that demand high accuracy and low complexity. This research provides valuable insights for optimizing object detection in various applications requiring both high accuracy and rapid responsiveness.
Abstract:In the field of object classification, identification based on object variations is a challenge in itself. Variations include shape, size, color, and texture, these can cause problems in recognizing and distinguishing objects accurately. The purpose of this research is to develop a classification method so that objects can be accurately identified. The proposed classification model uses Voting and Combined Classifier, with Random Forest, K-NN, Decision Tree, SVM, and Naive Bayes classification methods. The test results show that the voting method and Combined Classifier obtain quite good results with each of them, ensemble voting with an accuracy value of 92.4%, 78.6% precision, 95.2% recall, and 86.1% F1-score. While the combined classifier with an accuracy value of 99.3%, a precision of 97.6%, a recall of 100%, and a 98.8% F1-score. Based on the test results, it can be concluded that the use of the Combined Classifier and voting methods is proven to increase the accuracy value. The contribution of this research increases the effectiveness of the Ensemble Learning method, especially the voting ensemble method and the Combined Classifier in increasing the accuracy of object classification in image processing.