Abstract:High-frequency displays are gaining immense popularity because of their increasing use in video games and virtual reality applications. However, the issue is that the underlying GPUs cannot continuously generate frames at this high rate -- this results in a less smooth and responsive experience. Furthermore, if the frame rate is not synchronized with the refresh rate, the user may experience screen tearing and stuttering. Previous works propose increasing the frame rate to provide a smooth experience on modern displays by predicting new frames based on past or future frames. Interpolation and extrapolation are two widely used algorithms that predict new frames. Interpolation requires waiting for the future frame to make a prediction, which adds additional latency. On the other hand, extrapolation provides a better quality of experience because it relies solely on past frames -- it does not incur any additional latency. The simplest method to extrapolate a frame is to warp the previous frame using motion vectors; however, the warped frame may contain improperly rendered visual artifacts due to dynamic objects -- this makes it very challenging to design such a scheme. Past work has used DNNs to get good accuracy, however, these approaches are slow. This paper proposes Exwarp -- an approach based on reinforcement learning (RL) to intelligently choose between the slower DNN-based extrapolation and faster warping-based methods to increase the frame rate by 4x with an almost negligible reduction in the perceived image quality.
Abstract:Testing of integrated circuits (IC) is a highly expensive process but also the most important one in determining the defect level of an IC. Manufacturing defects in the IC are modeled using stuck-at-fault models. Stuck-at-fault models cover most of the physical faults that occur during the manufacturing process. With decreasing feature sizes due to the advancement of semiconductor technology, the defects are also getting smaller in size. Tests for these hard-to-detect defects are generated using deterministic test generation (DTG) algorithms. Our work aims at reducing the cost of Path Oriented Decision Making: PODEM (a DTG algorithm) without compromising the test quality. We trained a meta predictor to choose the best model given the circuit and the target net. This ensemble chooses the best probability prediction model with a 95% accuracy. This leads to a reduced number of backtracking decisions and much better performance of PODEM in terms of its CPU time. We show that our ML- guided PODEM algorithm with a meta predictor outperforms the baseline PODEM by 34% and other state-of-the-art ML-guided algorithms by at least 15% for ISCAS85 benchmark circuits.