Abstract:The Kernel-Free Boundary Integral (KFBI) method presents an iterative solution to boundary integral equations arising from elliptic partial differential equations (PDEs). This method effectively addresses elliptic PDEs on irregular domains, including the modified Helmholtz, Stokes, and elasticity equations. The rapid evolution of neural networks and deep learning has invigorated the exploration of numerical PDEs. An increasing interest is observed in deep learning approaches that seamlessly integrate mathematical principles for investigating numerical PDEs. We propose a hybrid KFBI method, integrating the foundational principles of the KFBI method with the capabilities of deep learning. This approach, within the framework of the boundary integral method, designs a network to approximate the solution operator for the corresponding integral equations by mapping the parameters, inhomogeneous terms and boundary information of PDEs to the boundary density functions, which can be regarded as the solution of the integral equations. The models are trained using data generated by the Cartesian grid-based KFBI algorithm, exhibiting robust generalization capabilities. It accurately predicts density functions across diverse boundary conditions and parameters within the same class of equations. Experimental results demonstrate that the trained model can directly infer the boundary density function with satisfactory precision, obviating the need for iterative steps in solving boundary integral equations. Furthermore, applying the inference results of the model as initial values for iterations is also reasonable; this approach can retain the inherent second-order accuracy of the KFBI method while accelerating the traditional KFBI approach by reducing about 50% iterations.