Abstract:This study explores linguistic distinctions among American, Indian, and Irish English dialects and assesses various Language Models (LLMs) in their ability to generate British English translations from these dialects. Using cosine similarity analysis, the study measures the linguistic proximity between original British English translations and those produced by LLMs for each dialect. The findings reveal that Indian and Irish English translations maintain notably high similarity scores, suggesting strong linguistic alignment with British English. In contrast, American English exhibits slightly lower similarity, reflecting its distinct linguistic traits. Additionally, the choice of LLM significantly impacts translation quality, with Llama-2-70b consistently demonstrating superior performance. The study underscores the importance of selecting the right model for dialect translation, emphasizing the role of linguistic expertise and contextual understanding in achieving accurate translations.
Abstract:This paper conducts an intricate analysis of musical emotions and trends using Spotify music data, encompassing audio features and valence scores extracted through the Spotipi API. Employing regression modeling, temporal analysis, mood transitions, and genre investigation, the study uncovers patterns within music-emotion relationships. Regression models linear, support vector, random forest, and ridge, are employed to predict valence scores. Temporal analysis reveals shifts in valence distribution over time, while mood transition exploration illuminates emotional dynamics within playlists. The research contributes to nuanced insights into music's emotional fabric, enhancing comprehension of the interplay between music and emotions through years.