Abstract:As AI-generated sensitive images become more prevalent, identifying their source is crucial for distinguishing them from real images. Conventional image watermarking methods are vulnerable to common transformations like filters, lossy compression, and screenshots, often applied during social media sharing. Watermarks can also be faked or removed if models are open-sourced or leaked since images can be rewatermarked. We have developed a three-part framework for secure, transformation-resilient AI content provenance detection, to address these limitations. We develop an adversarially robust state-of-the-art perceptual hashing model, DinoHash, derived from DINOV2, which is robust to common transformations like filters, compression, and crops. Additionally, we integrate a Multi-Party Fully Homomorphic Encryption~(MP-FHE) scheme into our proposed framework to ensure the protection of both user queries and registry privacy. Furthermore, we improve previous work on AI-generated media detection. This approach is useful in cases where the content is absent from our registry. DinoHash significantly improves average bit accuracy by 12% over state-of-the-art watermarking and perceptual hashing methods while maintaining superior true positive rate (TPR) and false positive rate (FPR) tradeoffs across various transformations. Our AI-generated media detection results show a 25% improvement in classification accuracy on commonly used real-world AI image generators over existing algorithms. By combining perceptual hashing, MP-FHE, and an AI content detection model, our proposed framework provides better robustness and privacy compared to previous work.
Abstract:Integrated Gradients (IG) is a widely used algorithm for attributing the outputs of a deep neural network to its input features. Due to the absence of closed-form integrals for deep learning models, inaccurate Riemann Sum approximations are used to calculate IG. This often introduces undesirable errors in the form of high levels of noise, leading to false insights in the model's decision-making process. We introduce a framework, RiemannOpt, that minimizes these errors by optimizing the sample point selection for the Riemann Sum. Our algorithm is highly versatile and applicable to IG as well as its derivatives like Blur IG and Guided IG. RiemannOpt achieves up to 20% improvement in Insertion Scores. Additionally, it enables its users to curtail computational costs by up to four folds, thereby making it highly functional for constrained environments.