Abstract:Mobile networks consist of interconnected radio nodes strategically positioned across various geographical regions to provide connectivity services. The set of relations between these radio nodes, referred to as the \emph{mobile network topology}, is vital in the construction of the networking infrastructure. Typically, the connections between radio nodes and their associated cells are defined by software features that establish mobility relations (referred to as \emph{edges} in this paper) within the mobile network graph through heuristic methods. Although these approaches are efficient, they encounter significant limitations, particularly since edges can only be established prior to the installation of physical hardware. In this work, we use graph-based deep learning methods to determine mobility relations (edges), trained on radio node configuration data and reliable mobility relations set by Automatic Neighbor Relations (ANR) in stable networks. This paper focuses on measuring the accuracy and precision of different graph-based deep learning approaches applied to real-world mobile networks. We evaluated two deep learning models. Our comprehensive experiments on Telecom datasets obtained from operational Telecom Networks demonstrate the effectiveness of the graph neural network (GNN) model and multilayer perceptron. Our evaluation showed that considering graph structure improves results, which motivates the use of GNNs. Additionally, we investigated the use of heuristics to reduce the training time based on the distance between radio nodes to eliminate irrelevant cases. Our investigation showed that the use of these heuristics improved precision and accuracy considerably.
Abstract:There are vast number of configurable parameters in a Radio Access Telecom Network. A significant amount of these parameters is configured by Radio Node or cell based on their deployment setting. Traditional methods rely on domain knowledge for individual parameter configuration, often leading to sub-optimal results. To improve this, a framework using a Deep Generative Graph Neural Network (GNN) is proposed. It encodes the network into a graph, extracts subgraphs for each RAN node, and employs a Siamese GNN (S-GNN) to learn embeddings. The framework recommends configuration parameters for a multitude of parameters and detects misconfigurations, handling both network expansion and existing cell reconfiguration. Tested on real-world data, the model surpasses baselines, demonstrating accuracy, generalizability, and robustness against concept drift.