Abstract:This paper presents Deformable Neural Vessel Representations (DeNVeR), an unsupervised approach for vessel segmentation in X-ray videos without annotated ground truth. DeNVeR uses optical flow and layer separation, enhancing segmentation accuracy and adaptability through test-time training. A key component of our research is the introduction of the XACV dataset, the first X-ray angiography coronary video dataset with high-quality, manually labeled segmentation ground truth. Our evaluation demonstrates that DeNVeR outperforms current state-of-the-art methods in vessel segmentation. This paper marks an advance in medical imaging, providing a robust, data-efficient tool for disease diagnosis and treatment planning and setting a new standard for future research in video vessel segmentation. See our project page for video results at https://kirito878.github.io/DeNVeR/.
Abstract:In this paper, our objective is to improve the performance of the existing framework ShuttleNet in predicting badminton shot types and locations by leveraging past strokes. We participated in the CoachAI Badminton Challenge at IJCAI 2023 and achieved significantly better results compared to the baseline. Ultimately, our team achieved the first position in the competition and we made our code available.