Abstract:The lifted multicut problem has diverse applications in the field of computer vision. Exact algorithms based on linear programming require an understanding of lifted multicut polytopes. Despite recent progress, two fundamental questions about these polytopes have remained open: Which lower cube inequalities define facets, and which cut inequalities define facets? In this article, we answer the first question by establishing conditions that are necessary, sufficient and efficiently decidable. Toward the second question, we show that deciding facet-definingness of cut inequalities is NP-hard. This completes the analysis of canonical facets of lifted multicut polytopes.
Abstract:We propose a novel abstraction of the image segmentation task in the form of a combinatorial optimization problem that we call the multi-separator problem. Feasible solutions indicate for every pixel whether it belongs to a segment or a segment separator, and indicate for pairs of pixels whether or not the pixels belong to the same segment. This is in contrast to the closely related lifted multicut problem where every pixel is associated to a segment and no pixel explicitly represents a separating structure. While the multi-separator problem is NP-hard, we identify two special cases for which it can be solved efficiently. Moreover, we define two local search algorithms for the general case and demonstrate their effectiveness in segmenting simulated volume images of foam cells and filaments.