Abstract:Retail sales and price projections are typically based on time series forecasting. For some product categories, the accuracy of demand forecasts achieved is low, negatively impacting inventory, transport, and replenishment planning. This paper presents our findings based on a proactive pilot exercise to explore ways to help retailers to improve forecast accuracy for such product categories. We evaluated opportunities for algorithmic interventions to improve forecast accuracy based on a sample product category, Knitwear. The Knitwear product category has a current demand forecast accuracy from non-AI models in the range of 60%. We explored how to improve the forecast accuracy using a rack approach. To generate forecasts, our decision model dynamically selects the best algorithm from an algorithm rack based on performance for a given state and context. Outcomes from our AI/ML forecasting model built using advanced feature engineering show an increase in the accuracy of demand forecast for Knitwear product category by 20%, taking the overall accuracy to 80%. Because our rack comprises algorithms that cater to a range of customer data sets, the forecasting model can be easily tailored for specific customer contexts.
Abstract:From cutting costs to improving customer experience, forecasting is the crux of retail supply chain management (SCM) and the key to better supply chain performance. Several retailers are using AI/ML models to gather datasets and provide forecast guidance in applications such as Cognitive Demand Forecasting, Product End-of-Life, Forecasting, and Demand Integrated Product Flow. Early work in these areas looked at classical algorithms to improve on a gamut of challenges such as network flow and graphs. But the recent disruptions have made it critical for supply chains to have the resiliency to handle unexpected events. The biggest challenge lies in matching supply with demand. Reinforcement Learning (RL) with its ability to train systems to respond to unforeseen environments, is being increasingly adopted in SCM to improve forecast accuracy, solve supply chain optimization challenges, and train systems to respond to unforeseen circumstances. Companies like UPS and Amazon have developed RL algorithms to define winning AI strategies and keep up with rising consumer delivery expectations. While there are many ways to build RL algorithms for supply chain use cases, the OpenAI Gym toolkit is becoming the preferred choice because of the robust framework for event-driven simulations. This white paper explores the application of RL in supply chain forecasting and describes how to build suitable RL models and algorithms by using the OpenAI Gym toolkit.
Abstract:The web contains vast repositories of unstructured text. We investigate the opportunity for building a knowledge graph from these text sources. We generate a set of triples which can be used in knowledge gathering and integration. We define the architecture of a language compiler for processing subject-predicate-object triples using the OpenNLP parser. We implement a depth-first search traversal on the POS tagged syntactic tree appending predicate and object information. A parser enables higher precision and higher recall extractions of syntactic relationships across conjunction boundaries. We are able to extract 2-2.5 times the correct extractions of ReVerb. The extractions are used in a variety of semantic web applications and question answering. We verify extraction of 50,000 triples on the ClueWeb dataset.