Abstract:Rapid increase in internet users along with growing power of online review sites and social media has given birth to sentiment analysis or opinion mining, which aims at determining what other people think and comment. Sentiments or Opinions contain public generated content about products, services, policies and politics. People are usually interested to seek positive and negative opinions containing likes and dislikes, shared by users for features of particular product or service. This paper proposed sentence-level lexical based domain independent sentiment classification method for different types of data such as reviews and blogs. The proposed method is based on general lexicons i.e. WordNet, SentiWordNet and user defined lexical dictionaries for semantic orientation. The relations and glosses of these dictionaries provide solution to the domain portability problem. The method performs better than word and text level corpus based machine learning methods for semantic orientation. The results show the proposed method performs better as it shows precision of 87% and83% at document and sentence levels respectively for online comments.
Abstract:A definition of intelligence is given in terms of performance that can be quantitatively measured. In this study, we have presented a conceptual model of Intelligent Agent System for Automatic Vehicle Checking Agent (VCA). To achieve this goal, we have introduced several kinds of agents that exhibit intelligent features. These are the Management agent, internal agent, External Agent, Watcher agent and Report agent. Metrics and measurements are suggested for evaluating the performance of Automatic Vehicle Checking Agent (VCA). Calibrate data and test facilities are suggested to facilitate the development of intelligent systems.