Abstract:Despite all the progress in Web service selection, the need for an approach with a better optimality and performance still remains. This paper presents a genetic algorithm by adopting the Pareto principle that is called GAP2WSS for selecting a Web service for each task of a composite Web service from a pool of candidate Web services. In contrast to the existing approaches, all global QoS constraints, interservice constraints, and transactional constraints are considered simultaneously. At first, all candidate Web services are scored and ranked per each task using the proposed mechanism. Then, the top 20 percent of the candidate Web services of each task are considered as the candidate Web services of the corresponding task to reduce the problem search space. Finally, the Web service selection problem is solved by focusing only on these 20 percent candidate Web services of each task using a genetic algorithm. Empirical studies demonstrate this approach leads to a higher efficiency and efficacy as compared with the case that all the candidate Web services are considered in solving the problem.
Abstract:In graph theory, Graph Colouring Problem (GCP) is an assignment of colours to vertices of any given graph such that the colours on adjacent vertices are different. The GCP is known to be an optimization and NP-hard problem. Imperialist Competitive Algorithm (ICA) is a meta-heuristic optimization and stochastic search strategy which is inspired from socio-political phenomenon of imperialistic competition. The ICA contains two main operators: the assimilation and the imperialistic competition. The ICA has excellent capabilities such as high convergence rate and better global optimum achievement. In this research, a discrete version of ICA is proposed to deal with the solution of GCP. We call this algorithm as the DICA. The performance of the proposed method is compared with Genetic Algorithm (GA) on seven well-known graph colouring benchmarks. Experimental results demonstrate the superiority of the DICA for the benchmarks. This means DICA can produce optimal and valid solutions for different GCP instances.