Abstract:State Estimation is a crucial task in power systems. Graph Neural Networks have demonstrated significant potential in state estimation for power systems by effectively analyzing measurement data and capturing the complex interactions and interrelations among the measurements through the system's graph structure. However, the information about the system's graph structure may be inaccurate due to noise, attack or lack of accurate information about the topology of the system. This paper studies these scenarios under topology uncertainties and evaluates the impact of the topology uncertainties on the performance of a Temporal Graph Convolutional Network (TGCN) for state estimation in power systems. In order to make the model resilient to topology uncertainties, modifications in the TGCN model are proposed to incorporate a knowledge graph, generated based on the measurement data. This knowledge graph supports the assumed uncertain system graph. Two variations of the TGCN architecture are introduced to integrate the knowledge graph, and their performances are evaluated and compared to demonstrate improved resilience against topology uncertainties. The evaluation results indicate that while the two proposed architecture show different performance, they both improve the performance of the TGCN state estimation under topology uncertainties.
Abstract:This paper presents a Temporal Graph Neural Network (TGNN) framework for detection and localization of false data injection and ramp attacks on the system state in smart grids. Capturing the topological information of the system through the GNN framework along with the state measurements can improve the performance of the detection mechanism. The problem is formulated as a classification problem through a GNN with message passing mechanism to identify abnormal measurements. The residual block used in the aggregation process of message passing and the gated recurrent unit can lead to improved computational time and performance. The performance of the proposed model has been evaluated through extensive simulations of power system states and attack scenarios showing promising performance. The sensitivity of the model to intensity and location of the attacks and model's detection delay versus detection accuracy have also been evaluated.