Abstract:Panoramic radiography is a widely used imaging modality in dental practice and research. However, it only provides flattened 2D images, which limits the detailed assessment of dental structures. In this paper, we propose Occudent, a framework for 3D teeth reconstruction from panoramic radiographs using neural implicit functions, which, to the best of our knowledge, is the first work to do so. For a given point in 3D space, the implicit function estimates whether the point is occupied by a tooth, and thus implicitly determines the boundaries of 3D tooth shapes. Firstly, Occudent applies multi-label segmentation to the input panoramic radiograph. Next, tooth shape embeddings as well as tooth class embeddings are generated from the segmentation outputs, which are fed to the reconstruction network. A novel module called Conditional eXcitation (CX) is proposed in order to effectively incorporate the combined shape and class embeddings into the implicit function. The performance of Occudent is evaluated using both quantitative and qualitative measures. Importantly, Occudent is trained and validated with actual panoramic radiographs as input, distinct from recent works which used synthesized images. Experiments demonstrate the superiority of Occudent over state-of-the-art methods.