Abstract:This paper presents a generic framework for the numerical simulation of transformation-diffusion processes in complex volume geometric shapes. This work follows a previous one devoted to the simulation of microbial degradation of organic matter in porous system at microscopic scale. We generalized and improved the MOSAIC method significantly and thus yielding a much more generic and efficient numerical simulation scheme. In particular, regarding the simulation of diffusion processes from the graph, in this study we proposed a completely explicit and semi-implicit numerical scheme that can significantly reduce the computational complexity. We validated our method by comparing the results to the one provided by classical Lattice Boltzmann Method (LBM) within the context of microbial decomposition simulation. For the same datasets, we obtained similar results in a significantly shorter computing time (i.e., 10-15 minutes) than the prior work (several hours). Besides the classical LBM method takes around 3 weeks computing time.