Abstract:Analysis of high-resolution satellite images has been an important research topic for traffic management, city planning, and road monitoring. One of the problems here is automatic and precise road extraction. From an original image, it is difficult and computationally expensive to extract roads due to presences of other road-like features with straight edges. In this paper, we propose an approach for automatic road extraction based on a fully convolutional neural network of U-net family. This network consists of ResNet-34 pre-trained on ImageNet and decoder adapted from vanilla U-Net. Based on validation results, leaderboard and our own experience this network shows superior results for the DEEPGLOBE - CVPR 2018 road extraction sub-challenge. Moreover, this network uses moderate memory that allows using just one GTX 1080 or 1080ti video cards to perform whole training and makes pretty fast predictions.
Abstract:Semantic segmentation is in-demand in satellite imagery processing. Because of the complex environment, automatic categorization and segmentation of land cover is a challenging problem. Solving it can help to overcome many obstacles in urban planning, environmental engineering or natural landscape monitoring. In this paper, we propose an approach for automatic multi-class land segmentation based on a fully convolutional neural network of feature pyramid network (FPN) family. This network is consisted of pre-trained on ImageNet Resnet50 encoder and neatly developed decoder. Based on validation results, leaderboard score and our own experience this network shows reliable results for the DEEPGLOBE - CVPR 2018 land cover classification sub-challenge. Moreover, this network moderately uses memory that allows using GTX 1080 or 1080 TI video cards to perform whole training and makes pretty fast predictions.