Abstract:In order to allow for the encoding of additional statistical information in data fusion and transfer learning applications, we introduce a generalized covariance constraint for the matching component analysis (MCA) transfer learning technique. After proving a semi-orthogonally constrained trace maximization lemma, we develop a closed-form solution to the resulting covariance-generalized optimization problem and provide an algorithm for its computation. We call this technique -- applicable to both data fusion and transfer learning -- covariance-generalized MCA (CGMCA).
Abstract:We discuss general perturbation inequalities when the perturbation is random. As applications, we obtain several new results concerning two important problems: matrix sparsification and matrix completion.