Abstract:A key challenge in eXplainable Artificial Intelligence is the well-known tradeoff between the transparency of an algorithm (i.e., how easily a human can directly understand the algorithm, as opposed to receiving a post-hoc explanation), and its accuracy. We report on the design of a new deep network that achieves improved transparency without sacrificing accuracy. We design a deep convolutional neuro-fuzzy inference system (DCNFIS) by hybridizing fuzzy logic and deep learning models and show that DCNFIS performs as accurately as three existing convolutional neural networks on four well-known datasets. We furthermore that DCNFIS outperforms state-of-the-art deep fuzzy systems. We then exploit the transparency of fuzzy logic by deriving explanations, in the form of saliency maps, from the fuzzy rules encoded in DCNFIS. We investigate the properties of these explanations in greater depth using the Fashion-MNIST dataset.
Abstract:The combination of neural network and fuzzy systems into neuro-fuzzy systems integrates fuzzy reasoning rules into the connectionist networks. However, the existing neuro-fuzzy systems are developed under shallow structures having lower generalization capacity. We propose the first end-to-end deep neuro-fuzzy network and investigate its application for image classification. Two new operations are developed based on definitions of Takagi-Sugeno-Kang (TSK) fuzzy model namely fuzzy inference operation and fuzzy pooling operations; stacks of these operations comprise the layers in this network. We evaluate the network on MNIST, CIFAR-10 and CIFAR-100 datasets, finding that the network has a reasonable accuracy in these benchmarks.
Abstract:Multivariate time series classification is a high value and well-known problem in machine learning community. Feature extraction is a main step in classification tasks. Traditional approaches employ hand-crafted features for classification while convolutional neural networks (CNN) are able to extract features automatically. In this paper, we use dilated convolutional neural network for multivariate time series classification. To deploy dilated CNN, a multivariate time series is transformed into an image-like style and stacks of dilated and strided convolutions are applied to extract in and between features of variates in time series simultaneously. We evaluate our model on two human activity recognition time series, finding that the automatic features extracted for the time series can be as effective as hand-crafted features.