Abstract:Using raw sensor data to model and train networks for Human Activity Recognition can be used in many different applications, from fitness tracking to safety monitoring applications. These models can be easily extended to be trained with different data sources for increased accuracies or an extension of classifications for different prediction classes. This paper goes into the discussion on the available dataset provided by WISDM and the unique features of each class for the different axes. Furthermore, the design of a Long Short Term Memory (LSTM) architecture model is outlined for the application of human activity recognition. An accuracy of above 94% and a loss of less than 30% has been reached in the first 500 epochs of training.
Abstract:Visual Human Activity Recognition (HAR) and data fusion with other sensors can help us at tracking the behavior and activity of underground miners with little obstruction. Existing models, such as Single Shot Detector (SSD), trained on the Common Objects in Context (COCO) dataset is used in this paper to detect the current state of a miner, such as an injured miner vs a non-injured miner. Tensorflow is used for the abstraction layer of implementing machine learning algorithms, and although it uses Python to deal with nodes and tensors, the actual algorithms run on C++ libraries, providing a good balance between performance and speed of development. The paper further discusses evaluation methods for determining the accuracy of the machine-learning and an approach to increase the accuracy of the detected activity/state of people in a mining environment, by means of data fusion.