Abstract:The escalating accumulation of orbital debris threatens the sustainability of space operations, necessitating active removal solutions that overcome the limitations of current fuel-dependent methods. To address this, this study introduces a novel remediation architecture that integrates a mechanical clamping system for secure capture with a high-efficiency, solar-powered NASA Evolutionary Xenon Thruster (NEXT) and autonomous navigation protocols. High-fidelity simulations validate the architecture's capabilities, demonstrating a successful retrograde deorbit from 800 km to 100 km, <10m position Root Mean Square Errors (RMSE) via radar-based Extended Kalman Filter (EKF) navigation, and a 93\% data delivery efficiency within 1 second using Delay/Disruption Tolerant Network (DTN) protocols. This approach significantly advances orbital management by establishing a benchmark for renewable solar propulsion that minimizes reliance on conventional fuels and extends mission longevity for multi-target removal.
Abstract:In the case of Type-2 AGNs, estimating the mass of the black hole is challenging. Understanding how galaxies form and evolve requires considerable insight into the mass of black holes. This work compared different classical and quantum machine learning (QML) algorithms for black hole mass estimation, wherein the classical algorithms are Linear Regression, XGBoost Regression, Random Forest Regressor, Support Vector Regressor (SVR), Lasso Regression, Ridge Regression, Elastic Net Regression, Bayesian Regression, Decision Tree Regressor, Gradient Booster Regressor, Classical Neural Networks, Gated Recurrent Unit (GRU), LSTM, Deep Residual Networks (ResNets) and Transformer-Based Regression. On the other hand, quantum algorithms including Hybrid Quantum Neural Networks (QNN), Quantum Long Short-Term Memory (Q-LSTM), Sampler-QNN, Estimator-QNN, Variational Quantum Regressor (VQR), Quantum Linear Regression(Q-LR), QML with JAX optimization were also tested. The results revealed that classical algorithms gave better R^2, MAE, MSE, and RMSE results than the quantum models. Among the classical models, LSTM has the best result with an accuracy of 99.77%. Estimator-QNN has the highest accuracy for quantum algorithms with an MSE of 0.0124 and an accuracy of 99.75%. This study ascertains both the strengths and weaknesses of the classical and the quantum approaches. As far as our knowledge goes, this work could pave the way for the future application of quantum algorithms in astrophysical data analysis.