Abstract:Language models now constitute essential tools for improving efficiency for many professional tasks such as writing, coding, or learning. For this reason, it is imperative to identify inherent biases. In the field of Natural Language Processing, five sources of bias are well-identified: data, annotation, representation, models, and research design. This study focuses on biases related to geographical knowledge. We explore the connection between geography and language models by highlighting their tendency to misrepresent spatial information, thus leading to distortions in the representation of geographical distances. This study introduces four indicators to assess these distortions, by comparing geographical and semantic distances. Experiments are conducted from these four indicators with ten widely used language models. Results underscore the critical necessity of inspecting and rectifying spatial biases in language models to ensure accurate and equitable representations.
Abstract:This paper describes a method for annotation of epidemiological information in animal disease-related news articles. The annotation guidelines are generic and aim to embrace all animal or zoonotic infectious diseases, regardless of the pathogen involved or its way of transmission (e.g. vector-borne, airborne, by contact). The framework relies on the successive annotation of all the sentences from a news article. The annotator evaluates the sentences in a specific epidemiological context, corresponding to the publication of the news article.