Abstract:In this article, an active contours without edges (ACWE)-based algorithm has been proposed for the detection of solar filaments in H-alpha full-disk solar images. The overall algorithm consists of three main steps of image processing. These are image pre-processing, image segmentation, and image post-processing. Here in the work, contours are initialized on the solar image and allowed to deform based on the energy function. As soon as the contour reaches the boundary of the desired object, the energy function gets reduced, and the contour stops evolving. The proposed algorithm has been applied to few benchmark datasets and has been compared with the classical technique of object detection. The results analysis indicates that the proposed algorithm outperforms the results obtained using the existing classical algorithm of object detection.
Abstract:The detection and analysis of the solar coronal holes (CHs) is an important field of study in the domain of solar physics. Mainly, it is required for the proper prediction of the geomagnetic storms which directly or indirectly affect various space and ground-based systems. For the detection of CHs till date, the solar scientist depends on manual hand-drawn approaches. However, with the advancement of image processing technologies, some automated image segmentation methods have been used for the detection of CHs. In-spite of this, fast and accurate detection of CHs are till a major issues. Here in this work, a novel quantum computing-based fast fuzzy c-mean technique has been developed for fast detection of the CHs region. The task has been carried out in two stages, in first stage the solar image has been segmented using a quantum computing based fast fuzzy c-mean (QCFFCM) and in the later stage the CHs has been extracted out from the segmented image based on image morphological operation. In the work, quantum computing has been used to optimize the cost function of the fast fuzzy c-mean (FFCM) algorithm, where quantum approximate optimization algorithm (QAOA) has been used to optimize the quadratic part of the cost function. The proposed method has been tested for 193 \AA{} SDO/AIA full-disk solar image datasets and has been compared with the existing techniques. The outcome shows the comparable performance of the proposed method with the existing one within a very lesser time.