Department of Mechatronics & Industrial Engineering, Chittagong University of Engineering & Technology
Abstract:Patient length of stay (LoS) is a critical metric for evaluating the efficacy of hospital management. The primary objectives encompass to improve efficiency and reduce costs while enhancing patient outcomes and hospital capacity within the patient journey. By seamlessly merging data-driven techniques with simulation methodologies, the study proposes an all-encompassing framework for the optimization of patient flow. Using a comprehensive dataset of 2.3 million de-identified patient records, we analyzed demographics, diagnoses, treatments, services, costs, and charges with machine learning models (Decision Tree, Logistic Regression, Random Forest, Adaboost, LightGBM) and Python tools (Spark, AWS clusters, dimensionality reduction). Our model predicts patient length of stay (LoS) upon admission using supervised learning algorithms. This hybrid approach enables the identification of key factors influencing LoS, offering a robust framework for hospitals to streamline patient flow and resource utilization. The research focuses on patient flow, corroborating the efficacy of the approach, illustrating decreased patient length of stay within a real healthcare environment. The findings underscore the potential of hybrid data-driven models in transforming hospital management practices. This innovative methodology provides generally flexible decision-making, training, and patient flow enhancement; such a system could have huge implications for healthcare administration and overall satisfaction with healthcare.
Abstract:Flooding is a major natural hazard causing significant fatalities and economic losses annually, with increasing frequency due to climate change. Rapid and accurate flood detection and monitoring are crucial for mitigating these impacts. This study compares the performance of three deep learning models UNet, ResNet, and DeepLabv3 for pixelwise water segmentation to aid in flood detection, utilizing images from drones, in field observations, and social media. This study involves creating a new dataset that augments wellknown benchmark datasets with flood-specific images, enhancing the robustness of the models. The UNet, ResNet, and DeepLab v3 architectures are tested to determine their effectiveness in various environmental conditions and geographical locations, and the strengths and limitations of each model are also discussed here, providing insights into their applicability in different scenarios by predicting image segmentation masks. This fully automated approach allows these models to isolate flooded areas in images, significantly reducing processing time compared to traditional semi-automated methods. The outcome of this study is to predict segmented masks for each image effected by a flood disaster and the validation accuracy of these models. This methodology facilitates timely and continuous flood monitoring, providing vital data for emergency response teams to reduce loss of life and economic damages. It offers a significant reduction in the time required to generate flood maps, cutting down the manual processing time. Additionally, we present avenues for future research, including the integration of multimodal data sources and the development of robust deep learning architectures tailored specifically for flood detection tasks. Overall, our work contributes to the advancement of flood management strategies through innovative use of deep learning technologies.