Abstract:In this work, we demonstrate the viability of using federated learning to successfully predict energy consumption as well as solar production for all households within a certain network using low-power and low-space consuming embedded devices. We also demonstrate our prediction performance improving over time without the need for sharing private consumer energy data. We simulate a system with four nodes using data for one year to show this.
Abstract:Face verification systems aim to validate the claimed identity using feature vectors and distance metrics. However, no attempt has been made to bypass such a system using generated images that are constrained by the same feature vectors. In this work, we train StarGAN v2 to generate diverse images based on a human user, that have similar feature vectors yet qualitatively look different. We then demonstrate a proof of concept on a custom face verification system and verify our claims by demonstrating the same proof of concept in a black box setting on dating applications that utilize similar face verification systems.