Abstract:Fringe projection profilometry-based 3-D reconstruction of objects with high reflectivity and low surface roughness remains a significant challenge. When measuring such glossy surfaces, specular reflection and indirect illumination often lead to severe distortion or loss of the projected fringe patterns. To address these issues, we propose a latent diffusion-based structured light for reflective objects (LD-SLRO). Phase-shifted fringe images captured from highly reflective surfaces are first encoded to extract latent representations that capture surface reflectance characteristics. These latent features are then used as conditional inputs to a latent diffusion model, which probabilistically suppresses reflection-induced artifacts and recover lost fringe information, yielding high-quality fringe images. The proposed components, including the specular reflection encoder, time-variant channel affine layer, and attention modules, further improve fringe restoration quality. In addition, LD-SLRO provides high flexibility in configuring the input and output fringe sets. Experimental results demonstrate that the proposed method improves both fringe quality and 3-D reconstruction accuracy over state-of-the-art methods, reducing the average root-mean-squared error from 1.8176 mm to 0.9619 mm.
Abstract:In phase-shifting profilometry (PSP), any motion during the acquisition of fringe patterns can introduce errors because it assumes both the object and measurement system are stationary. Therefore, we propose a method to pixel-wise reduce the errors when the measurement system is in motion due to a motorized linear stage. The proposed method introduces motion-induced error reduction algorithm, which leverages the motor's encoder and pinhole model of the camera and projector. 3D shape measurement is possible with only three fringe patterns by applying geometric constraints of the digital fringe projection system. We address the mismatch problem due to the motion-induced camera pixel disparities and reduce phase-shift errors. These processes are easy to implement and require low computational cost. Experimental results demonstrate that the presented method effectively reduces the errors even in non-uniform motion.