Abstract:Autism Spectrum Disorder (ASD) presents significant challenges in early diagnosis and intervention, impacting children and their families. With prevalence rates rising, there is a critical need for accessible and efficient screening tools. Leveraging machine learning (ML) techniques, in particular Temporal Action Localization (TAL), holds promise for automating ASD screening. This paper introduces a self-attention based TAL model designed to identify ASD-related behaviors in infant videos. Unlike existing methods, our approach simplifies complex modeling and emphasizes efficiency, which is essential for practical deployment in real-world scenarios. Importantly, this work underscores the importance of developing computer vision methods capable of operating in naturilistic environments with little equipment control, addressing key challenges in ASD screening. This study is the first to conduct end-to-end temporal action localization in untrimmed videos of infants with ASD, offering promising avenues for early intervention and support. We report baseline results of behavior detection using our TAL model. We achieve 70% accuracy for look face, 79% accuracy for look object, 72% for smile and 65% for vocalization.
Abstract:To protect sensitive data in training a Generative Adversarial Network (GAN), the standard approach is to use differentially private (DP) stochastic gradient descent method in which controlled noise is added to the gradients. The quality of the output synthetic samples can be adversely affected and the training of the network may not even converge in the presence of these noises. We propose Differentially Private Model Inversion (DPMI) method where the private data is first mapped to the latent space via a public generator, followed by a lower-dimensional DP-GAN with better convergent properties. Experimental results on standard datasets CIFAR10 and SVHN as well as on a facial landmark dataset for Autism screening show that our approach outperforms the standard DP-GAN method based on Inception Score, Fr\'echet Inception Distance, and classification accuracy under the same privacy guarantee.