Abstract:An arrhythmia, also known as a dysrhythmia, refers to an irregular heartbeat. There are various types of arrhythmias that can originate from different areas of the heart, resulting in either a rapid, slow, or irregular heartbeat. An electrocardiogram (ECG) is a vital diagnostic tool used to detect heart irregularities and abnormalities, allowing experts to analyze the heart's electrical signals to identify intricate patterns and deviations from the norm. Over the past few decades, numerous studies have been conducted to develop automated methods for classifying heartbeats based on ECG data. In recent years, deep learning has demonstrated exceptional capabilities in tackling various medical challenges, particularly with transformers as a model architecture for sequence processing. By leveraging the transformers, we developed the ECGformer model for the classification of various arrhythmias present in electrocardiogram data. We assessed the suggested approach using the MIT-BIH and PTB datasets. ECG heartbeat arrhythmia classification results show that the proposed method is highly effective.
Abstract:Alzheimer's is a brain disease that gets worse over time and affects memory, thinking, and behavior. Alzheimer's disease (AD) can be treated and managed if it is diagnosed early, which can slow the progression of symptoms and improve quality of life. In this study, we suggested using the Visual Transformer (ViT) and bi-LSTM to process MRI images for diagnosing Alzheimer's disease. We used ViT to extract features from the MRI and then map them to a feature sequence. Then, we used Bi-LSTM sequence modeling to keep the interdependencies between related features. In addition, we evaluated the performance of the proposed model for the binary classification of AD patients using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Finally, we evaluated our method against other deep learning models in the literature. The proposed method performs well in terms of accuracy, precision, F-score, and recall for the diagnosis of AD.