Abstract:Reliable aero-engine anomaly detection is crucial for ensuring aircraft safety and operational efficiency. This research explores the application of the Fisher autoencoder as an unsupervised deep learning method for detecting anomalies in aero-engine multivariate sensor data, using a Gaussian mixture as the prior distribution of the latent space. The proposed method aims to minimize the Fisher divergence between the true and the modeled data distribution in order to train an autoencoder that can capture the normal patterns of aero-engine behavior. The Fisher divergence is robust to model uncertainty, meaning it can handle noisy or incomplete data. The Fisher autoencoder also has well-defined latent space regions, which makes it more generalizable and regularized for various types of aero-engines as well as facilitates diagnostic purposes. The proposed approach improves the accuracy of anomaly detection and reduces false alarms. Simulations using the CMAPSS dataset demonstrate the model's efficacy in achieving timely anomaly detection, even in the case of an unbalanced dataset.
Abstract:This paper investigates unsupervised anomaly detection in multivariate time-series data using reinforcement learning (RL) in the latent space of an autoencoder. A significant challenge is the limited availability of anomalous data, often leading to misclassifying anomalies as normal events, thus raising false negatives. RL can help overcome this limitation by promoting exploration and balancing exploitation during training, effectively preventing overfitting. Wavelet analysis is also utilized to enhance anomaly detection, enabling time-series data decomposition into both time and frequency domains. This approach captures anomalies at multiple resolutions, with wavelet coefficients extracted to detect both sudden and subtle shifts in the data, thereby refining the anomaly detection process. We calibrate the decision boundary by generating synthetic anomalies and embedding a supervised framework within the model. This supervised element aids the unsupervised learning process by fine-tuning the decision boundary and increasing the model's capacity to distinguish between normal and anomalous patterns effectively.
Abstract:Non-intrusive Load Monitoring (NILM) is an established technique for effective and cost-efficient electricity consumption management. The method is used to estimate appliance-level power consumption from aggregated power measurements. This paper presents a hybrid learning approach, consisting of a convolutional neural network (CNN) and a bidirectional long short-term memory (BILSTM), featuring an integrated attention mechanism, all within the context of disaggregating low-frequency power data. While prior research has been mainly focused on high-frequency data disaggregation, our study takes a distinct direction by concentrating on low-frequency data. The proposed hybrid CNN-BILSTM model is adept at extracting both temporal (time-related) and spatial (location-related) features, allowing it to precisely identify energy consumption patterns at the appliance level. This accuracy is further enhanced by the attention mechanism, which aids the model in pinpointing crucial parts of the data for more precise event detection and load disaggregation. We conduct simulations using the existing low-frequency REDD dataset to assess our model performance. The results demonstrate that our proposed approach outperforms existing methods in terms of accuracy and computation time.