Abstract:Addressing global challenges such as greenhouse gas emissions and resource inequity demands advanced AI-driven coordination among autonomous agents. We propose CH-MARL (Constrained Hierarchical Multiagent Reinforcement Learning), a novel framework that integrates hierarchical decision-making with dynamic constraint enforcement and fairness-aware reward shaping. CH-MARL employs a real-time constraint-enforcement layer to ensure adherence to global emission caps, while incorporating fairness metrics that promote equitable resource distribution among agents. Experiments conducted in a simulated maritime logistics environment demonstrate considerable reductions in emissions, along with improvements in fairness and operational efficiency. Beyond this domain-specific success, CH-MARL provides a scalable, generalizable solution to multi-agent coordination challenges in constrained, dynamic settings, thus advancing the state of the art in reinforcement learning.
Abstract:The paper provides an understanding of social capital in organizations that are open membership multi-agent systems with an emphasis in our formulation on the dynamic network of social interaction that, in part, elucidate evolving structures and impromptu topologies of networks. This paper, therefore, models an open source project as an organizational network. It provides definitions of social capital for this organizational network and formulation of the mechanism to optimize the social capital for achieving its goal that is optimized productivity. A case study of an open source Apache-Hadoop project is considered and empirically evaluated. An analysis of how social capital can be created within this type of organizations and driven to a measurement for its value is provided. Finally, a verification on whether the social capital of the organizational network is proportional towards optimizing their productivity is considered.