Abstract:In the construction sector, ensuring worker safety is of the utmost significance. In this study, a deep learning-based technique is presented for identifying safety gear worn by construction workers, such as helmets, goggles, jackets, gloves, and footwears. The recommended approach uses the YOLO v7 (You Only Look Once) object detection algorithm to precisely locate these safety items. The dataset utilized in this work consists of labeled images split into training, testing and validation sets. Each image has bounding box labels that indicate where the safety equipment is located within the image. The model is trained to identify and categorize the safety equipment based on the labeled dataset through an iterative training approach. We used custom dataset to train this model. Our trained model performed admirably well, with good precision, recall, and F1-score for safety equipment recognition. Also, the model's evaluation produced encouraging results, with a mAP@0.5 score of 87.7\%. The model performs effectively, making it possible to quickly identify safety equipment violations on building sites. A thorough evaluation of the outcomes reveals the model's advantages and points up potential areas for development. By offering an automatic and trustworthy method for safety equipment detection, this research makes a contribution to the fields of computer vision and workplace safety. The proposed deep learning-based approach will increase safety compliance and reduce the risk of accidents in the construction industry
Abstract:In order to ensure traffic safety through a reduction in fatalities and accidents, vehicle speed detection is essential. Relentless driving practices are discouraged by the enforcement of speed restrictions, which are made possible by accurate monitoring of vehicle speeds. Road accidents remain one of the leading causes of death in Bangladesh. The Bangladesh Passenger Welfare Association stated in 2023 that 7,902 individuals lost their lives in traffic accidents during the course of the year. Efficient vehicle speed detection is essential to maintaining traffic safety. Reliable speed detection can also help gather important traffic data, which makes it easier to optimize traffic flow and provide safer road infrastructure. The YOLOv8 model can recognize and track cars in videos with greater speed and accuracy when trained under close supervision. By providing insights into the application of supervised learning in object identification for vehicle speed estimation and concentrating on the particular traffic conditions and safety concerns in Bangladesh, this work represents a noteworthy contribution to the area. The MAE was 3.5 and RMSE was 4.22 between the predicted speed of our model and the actual speed or the ground truth measured by the speedometer Promising increased efficiency and wider applicability in a variety of traffic conditions, the suggested solution offers a financially viable substitute for conventional approaches.
Abstract:The purpose of the Insect Detection System for Crop and Plant Health is to keep an eye out for and identify insect infestations in farming areas. By utilizing cutting-edge technology like computer vision and machine learning, the system seeks to identify hazardous insects early and accurately. This would enable prompt response to save crops and maintain optimal plant health. The Method of this study includes Data Acquisition, Preprocessing, Data splitting, Model Implementation and Model evaluation. Different models like MobileNetV2, ResNet152V2, Xecption, Custom CNN was used in this study. In order to categorize insect photos, a Convolutional Neural Network (CNN) based on the ResNet152V2 architecture is constructed and evaluated in this work. Achieving 99% training accuracy and 97% testing accuracy, ResNet152V2 demonstrates superior performance among four implemented models. The results highlight its potential for real-world applications in insect classification and entomology studies, emphasizing efficiency and accuracy. To ensure food security and sustain agricultural output globally, finding insects is crucial. Cutting-edge technology, such as ResNet152V2 models, greatly influence automating and improving the accuracy of insect identification. Efficient insect detection not only minimizes crop losses but also enhances agricultural productivity, contributing to sustainable food production. This underscores the pivotal role of technology in addressing challenges related to global food security.