Abstract:This paper explores the design strategies for hybrid pole- or trunk-climbing robots, focusing on methods to inform design decisions and assess metrics such as adaptability and performance. A wheeled-grasping hybrid robot with modular, tendon-driven grasping arms and a wheeled drive system mounted on a turret was developed to climb columns of varying diameters. Here, the key innovation is the underactuated arms that can be adjusted to different column sizes by adding or removing modular linkages, though the robot also features capabilities like self-locking (the ability of the robot to stay on the column by friction without power), autonomous grasping, and rotation around the column axis. Mathematical models describe conditions for self-locking and vertical climbing. Experimental results demonstrate the robot's efficacy in climbing and self-locking, validating the proposed models and highlighting the potential for fully automated solutions in industrial applications. This work provides a comprehensive framework for evaluating and designing hybrid climbing robots, contributing to advancements in autonomous robotics for environments where climbing tall structures is critical.
Abstract:This paper presents a novel actuator system combining a twisted string actuator (TSA) with a winch mechanism. Relative to traditional hydraulic and pneumatic systems in robotics, TSAs are compact and lightweight but face limitations in stroke length and force-transmission ratios. Our integrated TSA-winch system overcomes these constraints by providing variable transmission ratios through dynamic adjustment. It increases actuator stroke by winching instead of overtwisting, and it improves force output by twisting. The design features a rotating turret that houses a winch, which is mounted on a bevel gear assembly driven by a through-hole drive shaft. Mathematical models are developed for the combined displacement and velocity control of this system. Experimental validation demonstrates the actuator's ability to achieve a wide range of transmission ratios and precise movement control. We present performance data on movement precision and generated forces, discussing the results in the context of existing literature. This research contributes to the development of more versatile and efficient actuation systems for advanced robotic applications and improved automation solutions.