Abstract:Forests are crucial for ecological balance, but wildfires, a major cause of forest loss, pose significant risks. Fire weather indices, which assess wildfire risk and predict resource demands, are vital. With the rise of sensor networks in fields like healthcare and environmental monitoring, semantic sensor networks are increasingly used to gather climatic data such as wind speed, temperature, and humidity. However, processing these data streams to determine fire weather indices presents challenges, underscoring the growing importance of effective forest fire detection. This paper discusses using Apache Spark for early forest fire detection, enhancing fire risk prediction with meteorological and geographical data. Building on our previous development of Semantic Sensor Network (SSN) ontologies and Semantic Web Rules Language (SWRL) for managing forest fires in Monesterial Natural Park, we expanded SWRL to improve a Decision Support System (DSS) using a Large Language Models (LLMs) and Spark framework. We implemented real-time alerts with Spark streaming, tailored to various fire scenarios, and validated our approach using ontology metrics, query-based evaluations, LLMs score precision, F1 score, and recall measures.