Abstract:Traditional Chinese medicine (TCM) exhibits remarkable therapeutic efficacy in disease treatment and healthcare through personalized herb prescriptions. However, current herb recommendation models inadequately capture the multiscale relations between herbs and clinical symptoms, particularly neglecting latent correlations at the chemical-molecular scale. To address these limitations, we propose the Fusion of Multiscale Correlations of Herbs and Symptoms (FMCHS), an innovative framework that synergistically integrates molecular-scale chemical characteristics of herbs with clinical symptoms. The framework employs multi-relational graph transformer layers to generate enriched embeddings that preserve both structural and semantic features within herbs and symptoms. Through systematic incorporation of herb chemical profiles into node embeddings and implementation of attention-based feature fusion, FMCHS effectively utilizes multiscale correlations. Comprehensive evaluations demonstrate FMCHS's superior performance over the state-of-the-art (SOTA) baseline, achieving relative improvements of 8.85% in Precision@5, 12.30% in Recall@5, and 10.86% in F1@5 compared to the SOTA model on benchmark datasets. This work facilitates the practical application of TCM in disease treatment and healthcare.